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Abstract

The emergent character of space-time is a main topic in different ap-
proaches to Quantum Gravity. This article connects the emergence of
space-time and the emergence of particles, capable to translate in space-
time.

A model is proposed which describes the structure and dynamics of fun-
damental particles as well as the properties of space-time, emerging due
to the structural development and the motion of particles. Particles are
assumed to be composed and spatially extended in a circular extra space,
called basic space, however fundamental and nearly point-like in space-
time. The connected development of particles and space-time is realized
in two stages.

During the one-particle stage, intrinsic particle properties such as invari-
ant mass, charge, angular momentum (spin) and magnetic dipole moment
are formed by a force-free circular motion of masses and charges. An iso-
lated piece of space-time emerges as the translational state space of a par-
ticle, where a local mode and a nonlocal mode of translation appear. The
deterministic circular motion is accompanied by stochastic linear steps,
both performed with the velocity of light. The probabilistic description of
intermittent translation leads to the laws of the Special Relativity Theory.
During the second, multi-particle stage, the particle structure shows ca-
pabilities of interaction, and space-time develops from isolated pieces to a
general space-time spanned by spatial distances between different parti-
cles. The relativistic addition of velocities and the special Lorentz trans-
formation follow naturally from the probabilistic expressions.

In the nonlocal mode of translation, the particle model has six dimen-
sions (D = 5 + 1). Two subcomponents of a particle, called rotons, have
D = 3 +1 dimensions and different inobservable positions in space-time.
The nonlocal mode of translation corresponds to a superposion of quan-
tum states (quantum nonlocality) and represents possibly the origin of
nonlocal Newtonian gravity.
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1 Introduction

The recent research in Quantum Gravity shows the tendency to become a ‘non-
spatiotemporal theory’ [16],[18],[28]. However, no accepted solution exists for
the problem, how to generate space-time properties ‘Out of Nowhere’. This ar-
ticle proposes a connection between the emergence of space-time and the emer-
gence of particles, capable to translate in space-time.

The analogies between different levels of reality, which result in the assump-
tion of a circular ’extra space’ complementing space-time, represent the philo-
sophical foundation of this proposal [12].



Within the Standard Model of particle physics, leptons and quarks are nearly
“point-like" according to the resolution of recent scattering experiments. These
fermions are considered to be "elementary particles", not structured or com-
posed. The masses of leptons and quarks and the mixing of quarks in real
particles are not explained by the Standard Model (SM). The so called ’in-
trinsic’ properties, such as spin and magnetic dipole moment of a particle, are
successfully described by the Dirac theory and by Quantum Electro-Dynamics
(QED), however one needs abstract Hilbert spaces and a complex system of
virtual particles in these theories. In addition, the interaction of fundamental
particles and their self-interaction can be described only with certain complica-
tions because the interaction strengths and energies tend to become infinite if
the distances approach zero. These facts and some other fundamental problems
(such as the unknown nature of dark matter and dark energy) led to the view
that the Standard Model is presumably incomplete, despite the description of
the subatomic world by the SM, successful within its framework.

Since more than 100 years the main goal of newly developed particle models
is to explain the circular properties such as spin and magnetic dipole moment
by a circular physical motion. The motion of the electron bound within the
hydrogen atom was described by circles (Bohr 1913[4]) and ellipses (Sommerfeld
1916 [26]), finally by standing waves (Schrodinger, 1926 [24]). These periodic
motions of the electron were performed radiationless, without any loss of energy.

In a similar way a periodic motion was postulated also for the free electron.
Slater [25] was 1926 the first to estimate a radius of circulating electromagnetic
fields, matching the Compton wave-length of the electron divided by 27. Huang
[15] expressed 1952 very clear the proposed dimension of the circulation:

"The detailed motion of a free Dirac electron is investigated ....
It is shown that the well-known zitterbewegung may be looked upon
as a circular motion about the direction of the electron spin, with
a radius equal to the Compton wavelength (divided by 27) of the
electron. It is further shown that the intrinsic spin of the electron
may be looked upon as the “orbital angular momentum” of this
motion. The current produced by the zitterbewegung is seen to give
rise to the intrinsic magnetic moment of the electron".

The Compton radius is the characteristic extension of the most ring-like or
helical models, it amounts for the electron to ~ 386 fm, the Compton wavelength
equals ~ 2426 fm.

Such models were in severe contradiction to empirical facts. Scattering ex-
periments with electrons demonstrate their point-like character down to the
region of ~ 1073 fm, more than five orders of magnitude below the Compton
radius.

Despite the contra-indication by experimental results, geometric models have
been proposed also during the last decades [8], [22]. Hestenes developed a
coordinate-free 'space-time algebra’ in order to achieve a geometric interpre-
tation of the Dirac-equation without a visible contradiction to experiments.



However, he could not avoid the contact with quantitative results in defining a
"particle clock’ [14]. The time unit of this clock 7. = 4.0466 x 10~2! s corre-
sponds again to the rotation time needed at a circle which has a circumference of
one half the Compton-wavelength of the electron, identical with Slater’s result
mentioned above [25]. One century of efforts to resolve the difference between
a plausible geometry and the measured size of an electron had no success.

Beck [3] postulated therefore 2023 an ’internal space’ for the circulating
charge, but finally the radius of the ’total motion’ of the electron defined by
Beck equals the Compton wavelength divided by 4.

Models with an undetectable small extension seem to provide a solution to
the problem. Such models assume an internal structure and sometimes com-
positeness of leptons and quarks, mostly in higher dimensions than the four-
dimensional space-time. An important property of such models consists in the
invisibility to experiments caused by smallness. The extremely small dimensions
cannot be resolved by available accelerator energies. Therefore, the particles ap-
pear point-like in measurements while being extended.

Theodor Kaluza [17] and Oskar Klein [19] proposed already 1921 and 1926
a fifth dimension as a closed ring with a radius in the region of 10732m. The
possibility of compositeness of leptons and quarks was investigated for a long
time [1], [20]. However, no sign of compositeness could be found experimentally
[2].

Subcomponents of leptons and quarks (”"preons” or "rishons") have been
proposed with a small radius, not detectable experimetally. Consequently, their
mass has to be very large. The appropriate minimum preon mass amounts to >
200 GeV corresponding to the inverse radius of ~ 107® m. The main difficulty
of preon models is to explain, which kind of binding mechanism leads to the
small masses of leptons and quarks, which are negligible in comparison to the
preon mass. Therefore a coupling between preons has to be assumed, which
is basically different from other couplings — such as the coupling of quarks
in hadrons or the coupling of nucleons in nuclei, where always the mass of
constituents is smaller than the mass of the composed systems.

Superstring theories represent also an attempt to overcome the problems
with point-like particles: objects (strings with dimension 1 or branes with di-
mension 2) with vibrations in 6, 10 or 26 dimensions are assumed. To be
compatible with the four dimensions of space-time, the extra dimensions are
assumed to be compactified. Superstrings and branes are extended, however
undetectably small in the region of the Planck length. Therefore, they would
appear as point-like particles in all experiments. The superstring theory of-
fered hope to many theorists to find a unified description of all particles and
interactions, including gravity [11]. Unfortunately, no string theory predictions
could be verified experimentally. Moreover, the landscape of possible solutions
of string theory is so wide that it is extremely difficult (if not impossible) to
select the solution appropriate for our universe. A severe controversy regarding
the future prospects or the failure of string theory lasts over years [10].

In mathematical physics, one can define two different coordinate systems,
one represents space-time and the second is a mathematical defined space inac-



cessible to experiments.

Hilbert spaces can be defined to describe space-time properties in this way
[6], [5]. However, the character as function spaces and the big, frequently unlim-
ited number of dimensions make of Hilbert spaces less usable for the construction
of geometric particle models.

In 1979, DiVecchia and Ravndal described a supersymmetric Dirac particle
[9], [23]. The theory of the particle considers its dual existence: it exists in
Minkowski’s space-time, as well as in an anti-commutative space spanned by
Grassmann variables. The spin operator produced the correct spin of the parti-
cle only in this anti-commutative space, however, this space is not defined as a
circular space. Particles with a local (internal) supersymmetry have also been
studied in an external field. The theory is restricted to fields that do not disturb
the supersymmetry.

Wang et al. [27] differentiate between two spaces of a Dirac particle:

"The internal degrees of freedom of a Dirac particle are related
to its spinor structure called internal space H.. The external degrees
of freedom of a Dirac particle are associated with its position and
momentum in space called external space H,. The Dirac dynamics
couples the internal and external space interestingly."

The disappearance of space-time as carrier of fundamental physical prop-
erties is one of the main topics in Quantum Gravity (QG). Different theories
provide several interpretations of the emergent character of space-time. The ap-
proaches ’Causal Set Theory’ and 'Loop Quantum Gravity’ discuss space-time
without a connection to its material content, particles or macroscopic objects.
The ’String Theory’ and the ’Space-time Functionalism’, proposed by Huggett
and Wuethrich, consider the possibility of a common emergence of space-time
and matter [16]. The space-time functionalism is of a wide conceptual gener-
ality and requires, that ’higher-level entities/properties/states (of space-time)
are realized by the lower level ones’. This approach incorporates the idea of
different levels of reality, also worked out by the author of this paper [12].

In this paper, a dual space-concept and the compositeness of particles in its
eigenspace represent the main ideas.

The structural analogies between the levels of reality such as the molecular
and the atomic level are considered. It is intended, to find a description of
‘intrinsic’ properties of particles such as spin, mass and magnetic moment at
the next deeper, the subatomic level. For this purpose, the composition of
particles from subcomponents, circulating masses and charges, is assumed.

This article is organized as follows:

In section two the role of space-time at different levels of reality will be
discussed, down to the level where linear space seems to disappear and only
circular spaces remain.

Section three contains the introduction of a particle model without transla-
tion, having only ’static’ properties in space-time.

In section four the translation of a single particle model is investigated, which
is able to generate 'quanta’ of space and time.



The object of section five is the emergence of linear distances between several
particles in relative translation.

The definition of the self-energy of circulating charges is given in section six.

Section seven contains the properties of birotons as models of leptons, in
particular the derivation of a mass quantum and of gyromagnetic properties.

In section seven it will be discussed, whether isolated subcomponents of
particles could exist and possibly play a role in cosmology.

2 The different appearances of space-time

The term ’space’ is not restricted to geometric constructs with coordinates mea-
surable in length units. Various branches of science use phase spaces, function
spaces and other non-geometric types of spaces. In this article, state spaces will
be studied at the molecular, the atomic, and the subatomic level.

We remark, that state spaces can also be defined at higher levels, including the
level of living systems and of social communities, see the ’dual space concept’
in [12] and [13].

At the molecular level, a molecule is able to perform different vibrations and ro-
tations. This rotational-vibrational state space is not accessible to single atoms.
Only several atoms in stable chemical bounds can create these states. The en-
tirety of rotational - vibrational states span a 'common state space’ of molecules,
not populated by single atoms. Atoms ’do not exist’ in the common state space
of molecules.

At the atomic level, an analogous relationship can be observed. Atoms have
states of electronic excitation of their shells, these states span a characteristic
common state space. This state space is populated by single atoms or ions,
but inaccessible to free electrons or other isolated particles. Particles 'do not
exist’ in the common state space of atoms. The reason is, that single particles
cannot realize this kind of electronic excitation. Only the continual interaction
of several particles can create these states.

At the subatomic level, we suppose an analogous picture. Particles are assumed
to consist of subcomponents, called rotons’. Several rotons have to interact in
order to generate a particle and to appear and to translate in its common state
space, the space-time. Single, separated mono-rotons are unable to perform
linear translational motions, they ’do not exist’ in space-time. Mono-rotons are
restricted to a circular space, called basic space, which is invisible to observers
and inaccessible to direct experiments.

The molecular, atomic and subatomic level are shown in Fig. 1. A level 0 is
added for logical reasons, where only single rotons, the subcomponents of parti-
cles, are existing. A transition from this subparticle level 0 to the particle level
1 is not only connected with the emergence od particles, but also the common
state space of particles, the space-time, would energe. Space-time emerges to-
gether with the development of particles.

From this point of view, space-time appears as the state space of translational
states of particles, caused by the coupling of their subcomponents, the rotons.
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Figure 1: State spaces at the molecular, atomic and subatomic level. The states
of complex systems require the interaction of several components and cannot be
realized by single, isolated components. Matter at the subatomic level behaves
analogously. Subcomponents of particles are not existent in space-time, the
translational state space of particles. The yellow colored fields indicate the
non-existence of components in the corresponding state space of the systems,
consisting of these components.

Rotons bound to a particle structure generate in basic space the intrinsic
properties of particles such as mass, spin and magnetic dipole moment. These
properties have a circular origin, invariant mass in space time for instance comes
from rotational energy and from the self-energy of circulating charges in basic
space. These circular properties of an individual particle have the origin in
the ’eigenspace’ of that particle, where eigenspace means a special case of basic
space.

The second column of Fig.
different levels of reality.

In the first row with level number n = 3 space-time represents the domain of
translation of molecules. Space-time serves at this level merely as a ’container’
for the motion of molecules, the same as for aerosols, birds or any macroscopic
bodies.

In the second row (level n = 2), space time is the field of translation of atoms,
similar as in the first row to molecules. However, electrons show in space time
a special motion which has to be described by quantum mechanics, which was
first demonstrated by Schrodinger [24]. Simple models resembling a planetary
system with motions of atomic electrons on a circle (Sommerfeld [26]) or an
ellipse (Bohr [4]) turned out to be unsufficient.

In the third row (level n = 1) the particles live in space time as the domain
of translational motion, successfully described by Quantum Mechanics. The
space time dynamics of particles includes corpuscle-like and wave-like modes of

1 shows the different roles of space-time at



motion and a multitude of different interactions. Space time at this level plays
a complex role, it doesn’t represent a ’container’, it realizes the 'common state
space’ of particles.

In the last row (n = 0) subcomponents of particles, called rotons, ’do not exist’
in space-time. We assume, that at this level reality is represented outside space
time by single, unbound rotons living in circular spaces. This unusual extension
of reality into inobservable regions corresponds - at least in part - to the usual
assumption of virtual particles populating the physical 'vacuum’. Single Mono-
rotons could also play a role in the explanation of dark matter and dark energy,
this seems to be a justifiable conjecture.

Fig. 1 suggests the question, why translation represents the most important
characteristics of particles in space time and which mechanism generates the
capability of linear translation by the coupling of rotons with a purely circular
structure. These questions will be discussed in the next section.

3 Particle models without translation

The ’biroton’ is intended to represent the model of a Dirac-particle in its rest
frame. The biroton consists of two rotons with opposite spin direction. The
two partial spins i and /2 of the rotons add up to the total spin //2 of the
biroton. The two partial masses of the rotons are nearly equal, see Fig. 2.

7/ N
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27 - cycle
C M/2
e
internal roton
2

\ 4n — cycle /

Figure 2: The structure of a biroton, the model of a Dirac - particle (left chiral,
spin up). The total spin i/2 corresponds to the spin of a fermion, in Quantum
Mechanics to the spin component s, in the direction z of the spin axis.

The circular velocities +c¢ and —¢ of the roton masses correspond to the
eigenvalues in the Dirac — theory belonging to the ‘Zitterbewegung’. The sym-
metry of partial masses and the asymmetry of spin components of the rotons
reveal some kind of internal supersymmetry between them. The magnitude of
the total spin of the biroton i — g = ’% corresponds to the quantum number
s = % of fermions. The quantum number s+ 1 = % would require parallel spins
for both rotons, this is not considered to represent a particle model.

The circulation planes of the rotons represent two separate anticommutative
two-dimensional vector spaces. Gamma-matrices serve as unit vectors. The
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Figure 3: The coordinate schema of a biroton. A two-dimensional circulation
plane per roton (colored areas), the common spin axis and the time coordinate
result in six dimensions for the biroton. The radius and the tangential momen-
tum of each roton span a noncommutative vector space. The two circulation
planes do not belong to the same cylindrical space, because between vectors in
(721, 31) and vectors in (722, 732) doesn’t exist any mathematical operation.

two two-dimensional circulation planes, the common spin axis and the time
coordinate result in a total of six dimensions per biroton, see Fig. 3.

The angular momenta of the rotons have a semiclassical definition (all quan-
tities are vectors, we omitted the unit vectors):

Ly =priri=h; Ly =pporo =—h/2 (1)
pr1 = Mic pr2 = —Mae (2)
T1 :h/Mlc; T2 :h/QMQCle/Q (3)

The rotational energy %M c? of the circulating mass M is preserved and
appears as invariant energy Ey = moc? in space-time.

The cycle length [, the circumference of the external roton, represents the
minimum length of the particle model in basic space. The cycle time t. is the
corresponding minimum time interval. A. represents the cycle action of the
particle model, equal to Plancks constant h.

1
Erot = §MC2 = m002 = EO (4)
h he he
lo=2mr = —— = 5
e Mlc m002 E() ( )
le h
tcz—z—; AC—E()tc—h (6)
c 0



This conservation law for the energy, see eqn. 4, implies a halving of the
circulating mass M:

1
5M%M1%M2%m0 (7)

Slight differences between the roton masses M; and My due to differences
of the self-energies of circulating charges are neglected in the equations (5) and

(7).

4 Linear translation of a single biroton

4.1 Rotational and translational events

The circulation of masses and charges of a biroton in basic space represents a
geometric quantization in cycles, that means 27 radians for the external and
47 radians for the internal roton. In terms of the probability theory, one cy-
cle quantum equals one ’'rotational event’. The circular motion generates the
constant spin contributions of the rotons, this is a deterministic process. The
angular momenta L1 and Lo doesn’t show any fluctuations.

Besides deterministic rotational events generating the spin we assume the
occurence of an additional type of stochastic events called translational events.
Such additional events occur without disturbing the continual spin rotation. The
combination of rotational and translational events represents the simultaneous
propagation of the biroton in the circular basic space and in the linear space-
time by the same distance, the cycle length .. At models of photons, all events
are combinational events. The cycle length appears as circumference of the
external roton as well as wave length of the photon. The veloctity of light ¢
represents a circular velocity in basic space and linear velocity in space-time.
Combinational events occur in models of massive particle only with a certain
probability.

We define

/37 as the probability, that the next rotational event of the roton i is accom-
panied by a translational event and

R? =1 — /32 as the probability, that the next rotational event of the roton i
is without translation. Thus one obtains

RI+pBi=1; i=1,2 (8)

The two rotons of a biroton are completely undisturbed by translational
events, if simultaneously in both rotons no translational events occur. The
combined probability R? for this event of pure rotation is equal to the product

R* = Ri* Rj = (1 - B})(1 - 53) 9)

The corresponding translational probability 3?2 = 1 — R? depends on the
translational probabilities 32 of both rotons:

B2 =1-R:«R3=p2+p5— B3B3 = B2 + R22 (10)

10



The translational probability 52 of the biroton cannot increase to values
above unity. This is true, even if both rotons have probabilities ? ~ 1 and
the sum of their probabilities exceeds 1. This behavior is well known from the
Special Relativity Theory (SRT) and describes the relativistic addition of two
orthogonal velocities. We interpret the components E in Minkowski space-
time as dimensionless vector-like measures of orthogonal components p; of the
particle’s momentum p’ :

.

Bi="Pi=1 2 5lp (11)
|E|

7o (12)
||

FE is the total energy of the biroton in space-time, Ey the invariant energy
(rest energy) in space-time, originated by the rotational energy of circulating
masses and charges.

We name the quantity E ‘transil’ of the roton ¢. It represents a dimensionless
vector while the transil square 32 is a probability.

The relation (10) gives E{ 4 B_; and therefore an orthogonal relationship
exists between p; and p3. We choose p; as the component in spin direction (or
opposite to the spin, depending on the sign) and p3 as the component orthogonal
to the spin axis. The two momentum components are sufficient to describe
translation in three spatial dimensions, because the direction ’orthogonal to the
spin axis’ defines an area, not a one-dimensional direction.

The scalar quantity R is called 'rotil’ of the particle and can be interpreted
as the relation between invariant energy and total energy:

Eo p_ L (13)

B= 15 R

The reciprocal of the rotil R is the Lorentz-factor .
1 1

TR e

In the absence of translational events one obtains R? = 1, this characterizes
the static properties of the biroton. The condition R? = 1 can be realized only
for particle models containing mass quanta such as models of massive leptons
and hadrons.

Photons travel always with the velocity of light parallel or anti-parallel to
the spin axis, i.e. one has for the photon model

(14)

R*(ph) = Ri(ph) =0; R3(ph) =1 (15)
B%(ph) = Bi(ph) =1;  B3(ph) =0 (16)

The invariant energy of photons is zero, because they do not contain circu-
lating mass quanta.

11



Using the definitions (12) and (13), one obtains a correspondence between
the probabilistic equation derived in basic space and the relativistic energy-
momentum relation valid in Minkowski’ space-time:

R+ p* =1 (17)
Eo\? cp 2
(E) (D) =1 B3t (= p (18)

The double role of equation (17) qualifies it as a bridge between the particle
model in basic space - the biroton - and the observed particle in space-time.

4.2 Linear and circular distances

A biroton without translation, ’at rest’ in space-time, travels by circular motion
one cycle length I, per cycle time ¢, (see the definitions (5) and (6).

During translation with the uniform average velocity v = [Sc¢ the motion
of the biroton is characterized by circular as well as linear quantities of the
dimension ’length’. The cycle length [, gets in the average two orthogonal
components, the circular 'Lorentz interval’

ct. = Ret. = RI, (19)
and the linear spatial interval

xg = Pete = Pl (20)

The quantity 7. = Rt represents the proper time of the biroton. The two
orthogonal components of . add quadratically:

12 = (cme)® + a3 = (R* + B*)I2
The 'Lorentz interval’ c¢7,. corresponds to the space-time interval ds in the
SRT. One obtains
(cre)* =12 — 1:% (21)
ds* = c*dt* — da? (22)
The very small but finite intervals related to basic space models correspond

to infinitesimal quantities in SRT.
It is suitable to differentiate between three cases of the spatial interval xs:

e x3 = [, the ’lightlike’ case: The linear interval per cycle equals the full
circular cycle length, proper time is zero, 7. = 0 and 8 = 1, identically
with the characteristics of a photon.

e 13 < l. the 'timelike’ case: The linear interval per cycle is smaller than
the full circular cycle length, proper time is positive nonzero, 7. > 0 and
g <1

e x3 > [. the ’spacelike’ case is excluded if only a single particle is under
consideration. This would result in a negative proper time 7, < 0 which
would be unphysical.

12



4.3 Combinational events, the local and nonlocal mode of
translation

The ’transil’ quantities 6—1) and ﬁ_; defined in (12) determine the orthogonal

directions of the two linear components of the velocity ﬁ_é and the average of
the magnitude.

The translation of the biroton appears as an intermittent process. During
combinational events, jumps with the linear velocity of light ¢ are performed
in addition to the rotational motion with the circular velocity c. Combinational
events alternate with purely rotational events, where the particle is ’at rest’
in space-time. The linear velocity during purely circular Cyclﬁ is zero. The

average linear velocity of this intermittent process amounts to fc.

/ Combination event at roton 1 \

external roton, /\-FI c (linear)
combi-event
avg.velocity Bic

c (circular)

M/2
internal roton

taken away passively
\ Hr2 /

Figure 4: Combinational event with a linear step parallel to the spin axis with
the velocity c. The external roton initiates the linear motion, the internal roton
is passively taken away connected to the external roton. The ’rotil connection’
is symbolized by a strong common spin axis. The linear step contributs an
average velocity component (;c.

The Figures (4) and (5) show a geometric schema of combinational events
with linear steps parallel and perpendicular to the spin axis.

The two types of combinational events represent the 'local mode’ of transla-
tion, because the two rotons travel together and the biroton has always a well
defined position in space-time. The active roton takes away the passive one
due to a strong connection by a common spin axis. The probabilistic equation
R? + B? + 33R? = 1 represents a variant of equation (8) and can be linearized

in order to use the split of the transil § into two components. The translation
represents in the average a uniform motion with the constant velocity Sc, if ex-
ternal influences (forces) are absent. If 8 changes from step to step, acceleration
occurs. If the time dependence is different for 8; and fs, the trajectory of the
biroton becomes curved.

A second 'nonlocal mode’ of translation has no common spin axis, whereas
the directions of the roton axes remain parallel. The connection between the

13



/ Combination event at roton 2 \
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/
-C (circular)
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combi-event, M/2 c (linear)
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Figure 5: Combinational event with a translational step perpendicular to the
spin axis with the velocity c. The internal roton initiates the linear motion, the
external roton is passively taken away connected to the internal roton. The ’rotil
connection’ is symbolized by a strong spin axis. The linear step contributes an
average velocity component (Soc.

N
rotons is given by a common transil § realized by synchronous translational
events. The existence of such a nonlocal mode can be described mathematically
by a different linearization of the probabilistic equation

R*+ 3? = RIR3 + * = 1.

The two possible linearizations are compared in the following.
In the local mode the rotons are connected by the common rotil R, and the
transil 3 is splitted into the spatial components 8 and [o:

R*+ 87+ B3R —1=0 (23)
(Ryo + Biy1 + PaRiv2 — 1)(Ryo + Biv1 + B2 Rive +1) =0 (24)

In the nonlocal mode, the rotons are connected by the common transil 3.
The rotil R is splitted into Ry = Ey/E; and Ry = FEy/FE>, that results in
different roton energies E; and Es as well as different proper times 7; = R;t.
The linearization reads

RiR3+B°—-1=0 (25)

(Rivo + By — 1)(R3no + By +1) =0 (26)

The two linear expressions in equations (24) and (26) can separately set to
zero. Please note, that the linear expressions in the local mode are symmetrically

for both rotons. That means, the rotons are fixed to identical coordinates in
space-time.
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In the nonlocal mode, however, one obtains two different equations, one for each
roton. This allows different positions and paths for the rotons in space-time. The
average direction is identical for both rotons and determined by the symbolic
vector |, anticommuting with 7o, the unit vector of the time coordinate. A
more detailed theory could 7| describe as result of a linear combination of the
unit vectors ; and .

We remark, that only the compositeness of the particle model allows this type
of linearization like in equation (26). A non-composed, structure-less particle
model enables only the linearization according to equation (24).

The biroton in local mode is observable in space-time as a corpuscle, it
has 4 dimensions in this mode. The biroton in nonlocal mode is not directly
observable, it appears as probability wave in space-time. Two rotons take part
in this wave, presumably the biroton may appear as a couple of two parallel
waves. This assumption could help to understand the self-interference of a
single particle in a double-slit experiment. The biroton in nonlocal mode has
six dimensions in space-time, the same as in basic space. This could be the
reason of the inobservability in that mode.

The biroton can change between the two modes in its eigenspace without
delay. The change from the nonlocal into the local mode appears for an observer
in space-time as an abrupt, mysterious process. Quantum - Mechanics describes
the nonlocal mode as a wave packet or a superposition of quantum states. The
wave function has to be updated instantly, if the biroton changes its mode of
translation. Sometimes this change is interpreted as ’collapse’ of the wave func-
tion. The wave or wave packet disappears and the particle becomes observable
and detectable as a corpuscle on a screen. The biroton as a particle model,
changeable between two appearances in space-time having four respective six
dimensions, may help to understand the situation.

A symbolic geometric picture of the nonlocal mode gives Fig. 6.

/Biroton in transil connection: synchronous translatior\
/\F A (linear)

#Xelocity Re
12

¢ (circular)

external roton
2n - cycle

internal roton
2 X 2n = 4n cycle

K h12 -

Figure 6: A biroton in nonlocal mode of translation. The spin axes of the rotons
are parallel, but not aligned. The connection between the rotons exists in their
synchronous translational events with the velocity ¢, which appear in space-time
as two parallel probability waves. Their average velocity is Se.
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The number of dimensions of the biroton in basic space and in space-time is
shown in Fig. 7.

Basic space
roton 1 Yo Y1 Y2 ¥s; | unitvectors

o of the eigenspace
roton 2 Yo ¥1 Y2 yxn | ofabiroton
\—T—l
D=6
Space-time Space-time
local mode nonlocal mode
position space momentum space
roton1| ¢t x y z cty Py P, P.
(T TR o
roton2 | ¢t x y z cty Py, P, P.

L e el
D-4 D=6

Figure 7: Dimensionality of the biroton in basic space and in space-time. The
biroton has in basic space six dimensions, 2 x 2 from the two circulation planes,
one from the direction of the spin axis and a time coordinate. In local mode,
a reduction to 4 dimensions takes place due to the rotil coupling between the
rotons. The nonlocal mode preserves the original six dimensions. Two waves
have four dimensions each in momentum space, two of them are identcally.

A particle model performs translation in its ’'common state space’, see Fig.1.
This turns out to be a stochastic process, an overlay onto the deterministic
continual spin rotation. An overview over the four states, which constitute the
intermittent process of translation, is given in Fig. 8.

4.4 The probability wave

A few remarks should be made on the question, whether the particle model
defined in basic space can contribute to the nature of 'probability waves’, used
by Quantum Mechanics for the definition of quantum states.

Because we introduced the probabilities R and 32 at the very beginning of
this article (see equation (8), one can derive some properties of the probability
wave.

The entirety of translational events is of a stochastic nature and occurs with
the probability 2. During a combinational cycle, a translational step with the
linear velocity of light ¢ and the cycle distance z. is passed by the biroton.
During subsequent pure rotational cycles the linear velocity is zero. The next
combinational cycle follows after n, = 1/ cycles in the average, such that the
average velocity becomes v = fc,.averaging the one-cycle velocity ¢ over n,
cycles. The translation time during n, cycles is t = n,t., where t. means the
cycle time, defined in eqn. (6).
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Circulation only, /\ ‘h A BV
P

no translation
:_MLZ_/ N2
c

M2 C_—h /2 Synchronous translation M/2
of both rotons

5] Nonlocal mode

R + p* = |

Local mode g % Local mode

Roton 1 /\ Translation event /\
carried away at roton 1 R1c
M2 M/2 6
= ===
M72
e R2c
Translation event Roton 2
at roton 2 carried away

Figure 8: States of the biroton during the process of translation. The indicated
linear velocities such as B¢ and §;c are averages. The linear length interval
generated in combinational cycles is always constant and equals the cycle length

of the circular motion.

Quantity One cycle ng = 1/ cycles
| rotat.c. | combinat. cycle | sum or average
time interval l. l t=nyt. =1t./p
linear distance 0 Xe = ¢l X=Xxc=w
linear velocity 0 c= 3 v=2>=fc
: Pl _ B _ mee = _ B3R
linear momentum 0 G= = 7| = = ﬁ‘
energy, classic Eo Eo + Lmoc? Eo + Lmov?
ivi 1 2 1 2 _ Eo
energy, relativist. Eo Eo+ —=moc™ | Eo + —=mov =

Figure 9: Quantities of intermittent translation. The expressions for quantities
related to one cycle in combinational events contain the velocity of light ¢, while
the quantities representing a sum or the average over a number of cycles contain

the average velocity v = Bec.
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The linear cycle distance

h h
Te = th = ¢ = = )\Co’mpton (27)

Eo moc

remains constant over m, cycles, because no further increase occurs. z.
equals the Compton wave length Acompton Of the particle.

During rotational cycles, the linear distance x. does not change. As a func-
tion of the average velocity v one obtains after n, cycles © = z. = vt (see Fig.
9).

The identical magnitudes of the circular cycle length [. = he/Ey defined in
eqn. (5) and the linear cycle distance xz. = he/Ey illustrate the connection of
basic space and space-time. The invariance of the energy Ey and of the time
interval ¢, represent a typical example of the dual space concept.

The invariant energy Fj is generated in form of rotational energy, see eqn.
(4). In a combinational cycle, a supplement to Ey develops, known as kinetic
energy. A first intuitive assumption leads to an additional energy of %mocz,
corresponding to the invariant energy of one roton, active in the combinational
cycle. By averaging over 1/ cycles, the average additional energy would become
%mov2, the kinetic energy in classical, non-relativistic physics. Thus one has to
look for the correct relativistic additional energy. One gets moc?/(R + R?) in-
stead of moc?/2. Thus the kinetic energy is not an invariant quantity. Replacing
¢ by v = Bc one obtains a relativistic formula for the kinetic energy

2 . . . . .
FEiin = }g’fﬁ”RQ. The sum of invariant and kinetic energy gives the correct

expression of the total energy £ = Ey/R:

mov? b
Eo + Epin = moc® + 7 -i(-) = fo (28)

A proof of equation (28) uses division by mgc?:

B> _ 1-R* _ (1-R)(1+R) _ 1-R _ 1
L+ R+R? =1+ R(1+R) =1+ R(1+R) _1+T_ R

A graphical visualization of length and time intervals during the intermittent
process of translation is given in Fig.10. As an example, we set § = 1/3 and
ne =1/8=3.

The average time between two translational events is t./8 = 3t., during this
time the biroton travels one cycle length . = ct.. The red zig-zag line in Fig. 10
does not represent the probability wave. Instead, the wave could be generated
as an envelope of several translational events. The de Broglie wavelength A and
the wave period ¢, amount to

h hc he R

)\ = —_= = — = = —l‘c 29
p pc |E|B B (29)
A R x. R

b=y =53, = gk (30)
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Distance over time for intermittent translation

2 T — length ct
5 v - - - length Bct=0.333 ct

intermittent translation

Distance in units of cycle length

De Broglie wave length A

0 1t/ 2 3 4 5 6 7 8 9 10

——
De Broglie wave period A/v
Time in units of cycle time tc

Figure 10: Distances over time for intermittent translation. A schematic view is
given for 8 = 1/3 as an example. The equidistant translational events represent
a simplification. It shows only the average of a stochastic process, The quan-
tization of the translational motion leads to a quantized generation of linear
space.

where z. = hc/Ey represents the linear cycle length, see eqn (27). The
example drawn in Fig. 10 shows the de Broglie wavelength at

A\ = 3z. = 2./ and the wave period at \/v ~ 9t. = t./3?, we approximated
R = 0.9428 = 1 for graphic convenience. The geometric interpretation of the de
Broglie wavelength A depends on the parameter 3, the average relative velocity
of translation.

In Fig. 12 a Gaussian standard distribution (normal distribution, bell curve)
is compared with a squared cosine and sine function as a simple example of a
probability density. We suppose, that stochastic translational events are normal
distributed over time and such standard distributions are repeated periodically,
triggered by the deterministic rotational events.

It seems to be imaginable, that the probability density of Quantum Mechan-
ics represents a convenient approximation of a periodic Gaussian distribution.
Two periodic Gaussian distributions, originated from two rotons of the particle
model, could result in the same total probability density as the sum of sin?
and cos? functions. It remains unclear, however, why the square root of the
probability densities, the probability amplitudes, achieve a special importance
in Quantum Mechanics, while the square root of a Gaussian distribution has no
special meaning in the probability theory. The two rotons in the structure of a
biroton would suggest to assign one probability amplitude to one of the rotons.

The form of the standard distribution cannot be derived currently from
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Periodic Gaussian distributions vs. squared wave functions
1,2

- = cos?(x*r/2) - - sin?(x*r/2)

exp(-(x*m)A2)

exp(-((x-1)*m)*2)

Probability density
o
EY

0 = -~ CPN ~

1 05 0 05 1 15 2

Wavelength in units of 1/4

Figure 11: A periodic Gaussian distribution compared with a cos? wave function.

The sum of squared sin and cos wave functions represents an example for a
probability density in Quantum Mechanics.

the particle model. However, the central limit theorem could explain, that
the distribution of any random variable converges to a normal distribution as
the number of samples increases. The main issue of the proposed intermittent
translation model is therefore the fact, that combinational cycles originating
a linear jump with the velocity of light are randomly distributed around an
average distance of 1/ cycles.

The essential result of this section is the emergence of quanta of space and
time, the linear cycle distance z. and the cycle time t., generated by a single
particle during translational events.

An extension to several particles will be discussed in the next section.

5 The translation of several particles

5.1 The relativistic addition of velocities

We consider two independent particles (1) and (2), and the equation (17) holds
for each of them:

R%(i)+ %) =1; i=1,2.

Two separated particles generate by translation two insulated pieces of space-
—

time, characterized by the transils B(—l)> and 3(2) as well as the rotils R(1) and
R(2). A space-time distance between two particles can be defined by uniting

their probability spaces (sample spaces). We consider the case of parallel trans-
—_— —
lation of two particles, (1) || 5(2).
—_— —_—

The intuitive connection leads to R(1) * R(2) for the rotil and 5(1) + 5(2)
for the transil of the connected system. Unfortunately, the squared quantities
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R%*(1) * R?(2) + (B(1) + B(2))? do not represent the probability of the united
system. In the extreme case of two photons travelling in the same direction,
that means

B(1) = B(2) = 1, one would get

(B(1) + B(2))? = 4. Therefore one has to define a normalization constant in
order to obtain a complete probability space. We put in

R2(i) = 1— B2(i) , the result for the normalization constant of probabilities
is

R*(1)R*(2) + (B(1) + B(2))” = (1 + B(1)5(2))” (31)

N
Rotil R and transil 3 of the connected system of two particles have now
the form

_ RMRE) = _ BU+5
Bi= 1m0 T T s (52)
Ri+ 87 =1 (33)

The rotil R cannot be used to calculate a proper time, because two inde-
pendent particles do not have a common proper time.

g
The expression for the transil 3| leads to a formula for the addition of two
parallel velocities

1T1)):£(—)1)c I QTQ)):ﬂ(—>2)c We obtain

o(1) +v(2)
L+ov(1)v(2)/e?

Equation (34) represents the correct formula for the relativistic addition of
velocities, known from SRT.

=Bje= (34)

5.2 The special Lorentz transformation

A system of two particles provides the opportunity to use one of them as ’ref-
erence frame’ for the translation of the whole system. We choose the particle
with index 1 as reference, the quantities belonging to this reference system are
marked with a stroke: R'(1)=1; (1) =0

The probability Rﬁ that translational steps are completely absent in the
connected system has to remain unchanged during the transformation, that
means

RH = Rﬁ invariant (35)

The space-time intervals (Lorentz intervals) of the two particles remain sep-
arately invariant.

er(1) = cR(1)t = cR' (1)t = ct’ invariant (36)
cr(2) = cR(2)t = cR' (2)t invariant (37)
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Rotil and transil of particle 2, which performs now the translational motion
completely, get after the transformation the form

R(2) =R = m (38)
E@=7=fﬁ&%§kﬁwaﬁ (39)

The time coordinate after the transformation is given by
y_ R, (0+B1)BR) _ t+u(a(l)/e w0)

R(2) R(1) 1—p5%(1)

The particle 1, now the 'reference frame’, is at rest in space-time and there-
fore its spatial interval x is zero: z'(1) = 8'(1)ct' =0
The x - coordinate of particle 2 after transformation, representing the spatial
distance between particle 1 and 2, is given by
(1) + 2(2 2) + v(1)t
- -
B - P - 220 _ @+l )
V1= V1-52(1)

The formulas (40) and (41) represent special Lorentz transformations in 1
+ 1 dimensions.

For the reverse transformation from the frame with stroke back to the origi-
nal frame one gets nearly identical formulas. Any of the two particles can serve
as 'reference frame’, the other particle can perform all the translational steps.
The development of linear pieces of space-time is not fixed to the structure of a
distinguished particle.

The essential result of this section is the emergence of intervals of space
and time between different particles, generated by their relative translation.
Presumably the entirety of such intervals gives rise to the development of a
continuum of general space-time.

6 The self-energy of circulating charges

6.1 The Coulomb law in a circular space

In classical electrostatics, the Coulomb energy E¢ in a linear distance d from a
point charge amounts to

Eglzkea—hc:k i

&
y e E§=— == (42)

where a means the fine structure constant. The Coulomb energy can be ex-
pressed in ST or in Gaussian (G) units. We use the Gaussian system of quantities
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and units, thus the Coulomb constant bcomes k., = 1. Linear distances d can
be defined only in space-time, where two or more particles are present. In the
eigenspace of a single particle, d represents a circular distance such as the cycle
length [. or a multiple of .. Consequently, we consider d = 27r; = 47ry as the
self-distance of a charge circulating with the radius r1 or ro, see the definitions
in eqn. (2) and Fig. 3. The Coulomb energy

ahce

«
Erq = = — M,c? 43
ol 2mry 21 1e (43)

becomes the 'self-energy’ of a charge circulating together with the mass M; of the
first roton. The quantity ’self-energy’ does not exist in classical electrostatics.

The roton is divided into 2k parts, called ’'rings’, and the charge may be
attached to the ring mass M, = M;/2k of one ring only, where k is the ring
parameter. One gets the self-energy E¢,. of the charged ring

ka 1
Eor = 22 6 My = kz % M, (44)
T 2k
2= =2.322819465 x 1073 (45)
™

The total energy E,. of the ring in basic space comprises now the rotational
energy Fropr = %Mrc2 and the self-energy FE¢, of the charge.

The energy conservation leads to corresponding expressions in space-time,
however, there are two possibilities of energy conservation:

1. The charge is fized to the ring mass (index f) such that its self-energy
gets halved together with the ring mass:

1 1
E. ;= Erot,r + §ECT = §MTCQ(1 + k‘Z) = erZ(l + ]{12‘) (46)
2. The charge circulates independent of the ring mass (index s), and the
self-energy E¢, is conserved separately without halving:

1
Eys = Eroty + Ecr = gM,c“‘ + kz « Myc® = m,c*(1 4 2kz) (47)
Er,s = erQ(l + k‘Z) + kz * m7-02 = ET‘,f + AET' (48)

The total energy in the case of "independent" charges equals the total energy
for fixed charges plus a small quantity AFE,.. This surplus-amount of energy plays
an important role at the calculation of the anomalous dipole moment of leptons,
see section 7.2.

We assume, that single electromagnetic (em) charges are always independent
charges, while fluctuating charge pairs and the group of weak charges are fized
charges, see the next sections and Fig.13.

6.2 Energy factors of circulating charges

The factor (1 + kz) in equation (46) increases the energy of a charged ring and
is named ’energy factor’. The precise value of an energy factor depends on the
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number of cycles, during which the self-interaction of the charge continues. For
two cycles, one obtains the factor

dp=14+kz(1+kz)=1+kz+ (kz)2 (49)

Different types of charged rings differ by the number of cycles, after that the
charge jumps to another ring, where the self-interaction starts again. Four types
and its energy factors are shown in Fig. 12

Self-energy factors of a circulating charge,
k ring parameter

wi = 1 +kz + (k2)? + (k2)* + (k2)* + (kz)> +. ..

by +(kz)? by one cycle
-a VT,
dy + (kz)? dy two cycles
A
z= 2 ay ay three cycles

wi = 2.7 (k)" = 2= ; w; max. self-energy

Figure 12: Energy factors of circulating charges in dependence on the number
of cycles of continuous self-interaction.

Rings with one-cycle charges and energy factors by = 1 + kz appear always
pairwise as electrically neutral entity and are called 'fluctuating charge pairs’.
They are responsible for the coupling between rings and their self-energy is
conserved together with the rotational energy of the ring mass according to
eqn. (46). FLuctuating charge pairs compensate each other within the particle
structure, they are inobservable in space-time.

Infinitly circulating charges represent single electromagnetic (em) charges,
they have the energy factor wj and their self-energy is separately conserved
according to equations (47) and (48). SIngle em charges can be observed in
space-time as a property of a 'charged’ particle.

Double rings carrying two charges of the same sign represent weak charges,
a total of four weak charges is electrically neutral. Four weak charges give the
correct weak coupling strength relative to that of an em charge, see Fig.13.

The energy factor of the fourfold ring with alternating charges is uj < 1, it
reduces the rotational energy of the circulating masses:

up=1—kz(1+kz(l —kz(1 +Ekz(1 —kz(1 + kz(1 — k2)))))) = (50)
up =1 —kz — (k2)? + (k2)® + (k2)* — (k2)® — (k2) + (k2)" + ... (51)

The ring with four charges with alternating signs complements the group of
electroweak charges, it compensates the big self-energy of the four weak charges.
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/ Elektroweak charges:

o= Elektromagnetic (em) charge
WG
@ Weak charges (double negative ring)
+ +
@ Weak charges (double positive ring)
c +

o= =% ——4p Foualomaingcharges

o = (weak compensation ring)
Cﬁ Fluctuating charges,

K :‘ (one-cycle charge @
=== et

Figure 13: Ring types carrying integer charges which realize different interaction
capabilities. The electromagnetic (em) charge at the top of the figure determines
the observable charge of a particle. The weak interaction is realized by eight
single integer charges located at three rings. Positive and negative weak and
fluctuating charges compensate each other internally and do not influence the
electromagnetic properties of a particle.

6.3 The effective em coupling strength ae,, f¢

The Coulomb energy Ec of two charged particles according to eqn. (42) rep-
resents the electrostatic potential energy between two elementary charges e(1)
and €(2) in the linear distance d = 2/(2), see eqn. (41). The same amount of
Coulomb energy E¢ is generated as self-energy of a single charge in a circu-
lar self-distance d = 27ry. This energy conservation during the transition from
basic space to space-time represents another typical example of the dual space
concept. The electromagnetic coupling constant @ = ey, is the same in space-
time, where two charges e(1); e(2) exist, and in basic space, where a single
charge e realizes e(1) = e(2) = e. One gets in the Gaussian system of units

e(De(2) €2

dem = e T he

The effective electromagnetic coupling aem e ff increases with the ring para-
meter k, it is 'running’, related to a roton with 2k rings:

(52)

2

= %(wk —1) =a+akz +a(kz)?* + ... = awy (53)

Qemef f(k)

and the reciprocal becomes, using the sum formula wy = 1/(1 — kz)

1 1 o
—— = (1 —k2): =— 54

comer 1) SA—k2): 2= (54)
The reciprocal of the effective coupling shows a decrease with increasing ring
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parameter k, that means with increasing energy of the particle. This tendency
agrees with the behavior of a 'running constant’.

7 Birotons as lepton models

7.1 Skeleton and dress, the introduction of a mass quan-
tum

The three massive leptons, electron, muon, and tauon (and its antiparticles) can
be modelled as composite structures in basic space. However, the order has to
be changed into muon, electron and tauon. Exploring the basic space models,
the ring parameter k becomes 8, 16, and 32 for muon, electron and tauon, as
will be demonstrated within this section. Moreover, the ring mass of the muon
M, (1) appears also as a building stone in the models of electron and tauon, and
therefore we define this ring mass as "mass quantum" Mg in basic space and
mq = %MQ in space-time. The ring parameter k = 8 for the muon implies 2k
= 16 rings per roton and 4k = 32 rings per particle, thus we get a preliminary
value for the mass quantum from the mass m,, of the muon:

1
mqQ = §MQ ~ ~ 3.30 MeV/c? (55)

32"

The precise value of mg will be derived in section 7.3.

The main contribution to the mass of a particle comes from the circulating
mass, they form the ’skeleton’ of the particle model. A minor contribution to
the mass comes from the self-energy of circulating charges, we call this part the
"dress’. The skeleton masses of a lepton can be expressed by a general formula:

mlsept(k) = (2k + 2k) * %mQ ,

where 2k represents the number of rings per roton and ng is the ring mass
m,.. The small electron mass forces to assume the existence of negative mass
quanta, such that the electron gets the skeleton mass zero due to the internal
compensation of two large roton masses.

The ring mass increases from generation to generation by a factor of two, it
reaches 4mg for the tauon at k = 32. The number of rings also increases by a
factor of two, that results in a quadratic increase of the number of mass quanta
per lepton for muon and tauon:

1
M . = 5himg (56)
1
m;, = 582mQ = 32mgq (57)
1
mi = 5322mQ =512mq (58)
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The table in Fig.14 contains numerical values of the skeleton masses. The
first column shows the ring parameter k, which also indicates the number n of
the particle generation:

k = 2"%2 . n generation number (59)

Skeleton masses of massive leptons
k | mig, (k) = (2k £ 2k) * %mg MeV/c?
my, = (16 +16) * mg 104. 091
16| ms = (32-32) % 2mg 0
16 | m¥ =2(wie—1) *2mgo | 0.5022
fl em charge attached to roton 1 {}
32| mi=(64+64)*x4mg 1665. 46

Figure 14: Table of skeleton masses of lepton models. The skeleton masses of
muon and tauon follow from eqn. 56. The skeleton masses of the electron and
the electron neutrino are zero. The addition of an electromagnetic (em) charge
to one roton of the electron model generates the main part of the measured
electron mass.

Skeleton and dress components of the basic space models of muon, electron,
and tauon are depicted in the structural diagrams of Fig. 15.

The dresses of the models show an ’electroweak head’ of four rings, at roton
1 fully occupied by the energy factors of nine charges, one em charge and eight
charges realizing the capability for weak interaction.

The fluctuating charge pairs are symmetrically distributed between roton 1
and 2, identically structured in all cases.
In the electron model, the energy factors 2a; and a% of fluctuating charges are
present. In the electroweak head, one has to assume a3, instead of 2a3y as
energy factors of the weak charged rings. These assumptions are dictated by
the experimental values for the mass and the anomalous magnetic moment of
the electron, see the Figs. 16 and 17 later on.

The dress contribution w;, of the em charge plays a special role because of
its separate energy conservation, see equation (48). Consequently, the dresses
in the lepton mass formulas are different for basic space and space-time:

k
Miept = [D1(k) + Da(k)] * gMQ(k) in basic space (60)

Myept = [D1(k) + AD1(k) + Do(k)] * ng(k) in space — time (61)
ADy(k) = wp —1 (62)

The contribution of the self-energy of the em charge appears twice in the
space-time formula, wy — 1 is contained in D4 (k) as well in AD; (k). This reflects
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Muon Tauon

11 roton 1 | roton 2 1 roton 1 | roton 2
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32 rings per roton, ring mass oﬁ —2MQ|

Figure 15: Models of muon. electron, and tauon as structural diagrams. The
dot e symbolizes one mass quantum Mg in basic space. The diagrams show the
left chiral variant, electroweak charges are fixed to roton 1. They would change
to roton 2 at the right chiral variant.
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the fact, that the rotating mass is halved during the transition from basic space
to space-time, whereas the mass equivalent of the contribution of a rotating em
charge is not halved, due to the energy conservation of its self-energy, see eqns.
(47) and (48).

The formulas for lepton masses myep; in space-time are given in the table Fig.
16. In contrast to the structural diagrams, which refer to basic space models,
the formulas of my.p; are valid in space-time, they contain 2wy, instead of wy,.
The last column in Fig. 16 shows the deviation of the model values from the
measured values taken from [7].

| Mgt (k) = (D1(k) + AD1(k) £ D, (k)) * %mg ; minus sign for the electron

lepton Mieprmod (MeVic?) ;mg = 3.252848 MeVlc? dev.
1, k=8 | (2ws +2a16 +usy +24bs + 3)mg = 105. 657817 5.3 %108
e,k=16 | Qwis+ak +uer —4+ais —big) * 2mg = 0.510945 L1x107
epureem | m. x (2wis —2) * 2mg = —aar— x 2mg = 0.50224 1.7 %1072
7,k=32 | (2wsz + 2aes + 12s + 1663, +80b32 +27) * 4mg = 1776.94 3.3 x 107

Figure 16: Mass formulas for lepton models. The electron mass is calculated as
difference between the masses of roton 1 and 2 as shown in the structural dia-
gram. The main part of this difference comes from the electromagnetic charge,
see the row ’e pure em’.

The deviation of the model value of the muon mass could be reduced down
to 3.2 x 1078 by a small correction to the self-energy of one fluctuating charge,
one obtains:

my, = (2ws + 2a16 + usz + 23.5bg + 0.5ds + 3)m¢g = 105.658 3789 MeV/c%.

We remark, that the experimental value of m, is used as one input for the
derivation of the mass quantum mg, see eqn. 69.

7.2 Gyromagnetic properties and the anomalous magnetic
moment

The angular momenta (spin contributions) can be calculated separately for the
two rotons of a biroton, see Fig. 2 and eqn. (8). The angular momenta are
conserved, that means identical in basic space and space-time:

— hpd 1
’L1’=T1M1C=ﬁ§ ‘L‘:‘ 1+ 2’:57’1; conserved (63)

The same is true for the magnetic momenta. We assume, that the em charge
is located at one of the both rotons - at roton 1 in the left chiral case and at roton
2 for right chiral models. If roton 1 carries the em charge, also the magnetic
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moment p; is conserved:

1
1| = Fhers = 2q7]\141 ’171)‘ = 4%1 ‘L_I ; conserved (64)

The gyromagnetic g-factor g; of the first roton is defined by equation (65)
in basic space and by (66) in space-time. That means, the g-factor g; is not
conserved during the transition. The g-factor of the second roton is zero, go = 0.

.
g1 = Ll‘.) = 1; mnot conserved (65)
g1 L
2M; |71
.
|| my + Amy
g1 = T (66)
g1 L mq
4(m1+Am1) 1

We replace ‘IT{ ‘ = h by )f = % and obtain the gyromagnetic g-factor giepe
of the biroton. The result is gjepr = 2, approximately the result gjepr = 2 of the
Dirac-theory. The fraction on the right side of (66) can be reduced by the mass

quantum mg. Using eqn. (61) we get a formula with dresses instead of masses:

T m1 + Am Di+ AD
Glept = |M1| = 9 1 1_ 9 1 - 1 (67)
741 L mi 1
4(mi+Amy) ’ ‘
-2 AD
Qlept = gle% =01 — 1= D11 (68)

This formula for the anomalous magnetic moment a;.,+ can be tested for
charged leptons using AD;(k) = wg — 1 and the expressions for D; following
from the mass formulas (see Fig. 16). The anomalous magnetic moment does
not depend on assumptions for the mass quantum and is not influenced by the
second roton. This is of particular importance for the model of the electron,
where the electrically neutral antiroton is without effect on a..

The roton which carries no em charge, for instance roton 2, has the magnetic
moment e = 0.

Numerical values for the anomalous magnetic moment are summarized in
Fig. 17.

We remark, that a change of the self-energy of one fluctuating charge in
roton 1 of the muon from

bg = 148z = 1.018 583 to
(bs +ds)/2 =1+ 82+ 1(82)% = 1.018755

would result in a decrease in the deviation of a, from 1.1 x 10~° down to
6.5 * 1078, For the reason of simplicity, we don’t use here this correction. The
model proposed here cannot achieve the high precision of the exact calculations
in QED, however the model establishes a kind of quantum electrodynamics in
basic space.
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alept(k) — glzpz(zk)—z _ gl (k) 71 _ ADl(k)

D (k)
lepton Aiept(k) 3 AD1(k) = wr—1 = 1]3;';” dev.
pok=8 |a, » 2 = 1.1659329 x 107 1.1 %1075
e, k=16 |a. ~ W16+a%2+u:1+6;%6+MWS =1.1596525%x 1073 | 3 %1077
7, k=32 | a, ~ wwaw1‘2”835;;§2+40b32+12 = 1.17601 x 1073 | 1 % 1073 *)

*) Comparison with SM calculation, exp. value not available

Figure 17: The anomalous magnetic moment of lepton models, The formulas for
ajept depend on the ring parameter k, however they are independent of the mass
quantum and of the second roton. Thus the electron shows the same behavior
as muon and tauon, despite the negative mass of the second roton.

7.3 The derivation of the mass quantum

The mass quantum Mg in basic space and m¢ = £ Mg in space-time has been
introduced already as the ring mass of the muon in a generalized form, see
section 7.1. We use experimental values of the muon mass m, and the muon
anomalous magnetic momentum a,,, taken from [7] and [21] as input, inorder to
derive the precise numerical value of the mass quantum.

m,, = 105.6583755(23) MeV/c>
a, = 1.16592059(22) % 103

We use the equations (61) and (68) and obtain the dress contributions

DYPH(8) = =l = 182« L~ 162308756 ; (2 = a/n)

AD;(8) =ws — 1 = 195 = 1.893441 x 1072

Dy(8) =12bg +4=12(1+82) + 4 = 16.2229907

The term D¢*(8) represents a numerical dress value which would exactly
reproduce the anomalous magnetic moment of the muon, independent of a more
or less precise realization by a model expression. The muon resulting from this
mass becomes

my, = (D7™(8) + AD1(8) + Da(8)) * mq.
Using this expression, the mass quanta in space-time mg and in basic space
Mg get the values

1
mq = my/((ws = 1)(— +1) + 12bs + 4) = 3. 2528485 MeV/c? (69)
13

Mg = 2mg = 6.505697 MeV/c? = 1.159 746 x 10-%%g (70)

Using the model structure of the muon shown in Fig. 15, one obtains a value
for mg higher by 5% 1075. This deviation goes down to 3 x 10~® by adapting
for one fluctuating charge the correction
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bs =1+8z— L(bs+ds) =1+82+1(82)%. z=2

This correction would approximate the optimum dress value D7 t(S) much
better and also result in a more precise value for the anomalous magnetic mo-
ment, see section 7.2.

We estimate the systematic error of the mass quantum to be of the order
1075,

7.4 The weak interaction
7.4.1 The weak coupling strength

The effective weak coupling strength o, c¢f(k) is determined by two doubly
charged rings, related to a roton with 2k rings.

2 2
Qu,efr(k) = %(Mzk -2)= ?(azk — 1) = daem * ag (71)

The expression for a, crf(k) is similar to eqn. (53) for the effective electro-
magnetic coupling strength e ef¢. The relation

Qyy N 92 represents the counterpart to ae,, « 62, see eqn. (52). The weak
coupling constant g used in the SM corresponds to the elementary charge e.

The "Weinberg relation’

W = Qem,eff (72)
Qeak,ef f
between the two effective coupling strengths differs for the two forms of
the weak dress contributions: Separated doubly charged rings have the energy
factors 2agg, a condensed ring has the energy factor a3,.
The relation W becomes W (k) for separated or W, (k) for condensed weakly
charged rings:

we—1 1 1 1., T4, .y
k)= 77— =—-—-kz— -k —k
W(k) a1 1177 + ke + 0 (=) (73)
we—1 1 1 1.,, . a4 .\
Wo(k) = o Chr— k222 4 2%k 4
(k) 2 -1 1 L 22 +2k%2° + O (&%) (74)

The Table in Fig. 18 contains the relations W (k) of electromagnetic (em) and
weak coupling strengths calculated according to two model variants. The green
colored possibilities are favored, due to constraints coming from the modelling
of the anomalous magnetic momenta. The model value W,(16) for the electron
approximates the value of sin?Oy of the Standard Model.

7.4.2 The weak parity violation

The left — right asymmetry between the two states of a biroton (or an anti-
biroton) represents a geometric picture of the weak parity violation. Doubly
charged rings belonging to the weak charge group are depicted in Fig. 19. The
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= tenag® 2 _
= Tl O =0.23129

lepton | W(k) W (k)

muon | 0.24528 | 0.24064
16 | electron | 0.24045 | 0.23117
32| tawon |0.23068 | 0.21222

o | = I

Figure 18: The relation W of electromagnetic and weak coupling constants.The
green colored fields are preferred due to constraints from other calculations.
The value for the electron agrees well with the SM-value of sin?@yy, where Oy
means the Weinberg angle.

two charges of a weak double ring overlap at the right handed variant of the
model, not at the left handed; vice versa for anti-birotons (bottom row). The
overlap of charges presumably causes the unability of weak coupling.

7.4.3 The weak interaction of different particles

The electroweak theory as part of the Standard Model uses the picture of viirtual
heavy gauge bosons, mediating the weak interaction. The measured energy
equivalents of the masses of W - and Z - bosons are

mw = 80.379 & 0.012 GeV and mz = 91.1876 + 0.0021 GeV. The Heisen-
berg uncertainty relations are used to estimate the time of appearance and the
maximum distance passed by the virtual heavy bosons, if they travel with the
velocity of light. The result of such an estimation of the travel distance of a
virtual W# boson has the form

ke _ 197.3 (MeVsfm) 3
CAt’Vﬁ*m—l.?:ino fm

The very small distance passed by the mediator particle is considered as the
‘range’ of the weak interaction and as the origin of its weakness.

In basic space, however, the assumption of virtual mediator particles is not
useful. Instead, the contact of two circulating structures along a common cycle
length is appropriate. The circumference of the biroton determines the contact
length in basic space, replacing the propagation length determined by the un-
certainty relations in space-time. The cycle lengths of a lepton model has to be
multiplied by a small probability in order to get approximately 103 fm.

The geometry of the biroton is always present, thus one doesn’t need virtual
particles appearing spontaneously. The two pictures are completely equivalent,
and both don’t have an experimental verification. The formal description of the
two pictures provide identical results. This can be demonstrated on the Fermi-
constant, neglecting for a moment the energy dependence of this ’constant’.

Usually the Fermi constant has the energy-related form

V2G [/ (he)® = 1.1663787(6) x 107° [GeV 2]
This form is convenient for a theory using the exchange of heavy particles
(gauge bosons W+ or Z%). Instead, we use the length-related form, without
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/ biroton left chiral, spin up biroton right chiral, spin down \

'ﬁ Overlap of weak charges, 'h/2 .
external roton no weak coupling I I internal roton

T —

i
internal roton Ii /2 ” R  external roton

. /

/ antibiroton left chiral, spin up antibiroton right chiral, spin down \
/\ﬁ /2 . .
external antiroton internal antiroton
s * i

+
& .
internal antiroton ! E overlap of weak charges, # l external anfiroton

\ #2 no weak coupling /

Figure 19: Four states of a biroton or an anti-biroton corresponding to four
states of a Dirac spinor in rest frame. The overlap of two weak charges during the
47 - cycle of the internal roton disables the capability of weak interaction. This
restricts weak coupling to left chiral particles and right chiral antiparticles. The
combination of Parity operation and Charge conjugation preserves the capability
of weak interaction, corresponding to the diagonal in the Figure from the upper
left to the lower right panel.

changing the numerical value:
V2G /(i) = (he)?  V2Gr/(he)® = 4.541638 x 1077 [fm?]  (75)

The Fermi constant can be expressed in basic space as the effective coupling
strength ayeak,ess multiplied by two ’probability lengths’ L., (1) and L (2),
belonging to one of the two weakly interacting particles. Each value of L,, is
determined by the cycle length [. and a product of two probabilities p,,.

V2Gr/(he) = Qweak,ess * Lw(1)Lw(2) [fm?] (76)
Ly =l % p2 = 7622 [fm] (77)

4he 762
l‘:_zwl_MTc_W"ﬁUm] (78)

P = kz; z= (79)
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The probability of a charged ring to be ’active’, that means ready to interact
weakly, is assumed to be p,, = kz, such that p2 represents the probability, that
two rings of a roton are simultaneously active. The dependences of I. and p?,
on the ring parameter k cancel each other, see the eqns. (78) and (79). The
probability length

L, ~ 76222 =4.11 x 1073 fm



becomes independent of k in the approximation used here. The effective
weak coupling strength can be taken from eqn (71) also as an approximation
independent of k:

Qyeak,ef f = 4aem ~ 2.92 x 10_2.
The result of this coarse estimation is a numerical value in the region of the

Fermi constant in its length-related form, independent of the type and energy
of the two interacting particles:

Queak,eff * L2 ~2.92 x 1072 % (7622%)2 =4.94 x 1077 [fm?]  (80)

This example shows, that the interpretation of the electroweak theory pos-
sibly could be changed without changing the physical content, tat means the
observable quantities. Any term of the form

he [GeVxfm]

McZ [GeV]

can be interpreted as describing the exchange of a virtual particle with the
mass M (in GeV) in the ’physical vacuum’ or alternatively as describing the
common circulation along a contact length fic/M (in fm) within a temporary
common eigenspace. Such a change in interpretation would be possible without
any change in the formulation of measuring results.

Fig. 20 depicts the weak interaction as a point-like process involving four
fermions (upper panel), as an interaction of two ’currents’ by exchanging the
charged W~ - boson (second panel) and as a process of common circulation
of two interacting particles, forming a temporary common eigenspace (lower
panel).

8 Mono-rotons and its role in cosmology

8.1 Comparison of quanta of charge and mass

The basic space models of the electron and of neutrinos consist of positive as
well as negative mass quanta, this enables to explain the small masses of these
particles. This assumption corresponds to the existence of elementary charges
of both signs. However, positive and negative charges can be observed in space-
time, however masses observed in space-time are always positive. Fig. 21 shows
the comparison of attraction or repulsion of interacting charge or mass quanta
of different sign. Only the green colored interactions are directly observable in
space-time. The positive mass quanta M&S represent in basic space matter in
contrast to antimatter, which consists of negative mass quanta M, Q-

The pairwise internal compensation of charges as well as masses are necessary
assumptions for the construction of basic space models of leptons. The internal
compensation of fluctuating charge pairs contributes to the self energy, without
changing the observable charge state of the particle. The internal compensa-
tion of mass quanta in neutrino models allows to explain their weak interaction
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point-like interaction e
of four fermions

virtual particle w-
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Figure 20: The weak interaction in comparison of three interpretations. The
upper panel shows Fermi’s four-fermion theory with interaction at a point. The
second panel describes the exchange of a virtual W+ boson according to the
electroweak theory of the Standard Model. The lower panel shows the weak
interaction of two particle models by a common contact length in basic space.
The weak interaction appears here as the temporary generation of a common
eigenspace of the two interacting particles.
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capabilities, without appearing as an observable mass of the particle. The in-
ternal compensation of matter and antimatter implies the existence of 'mixed
matter’, a third kind of particles, assumed in models of neutrinos, the electron
and positron. We remark, that the 'mixing’ does not occur in space-time, where
zero or nearly zero particle masses appear as the result of mixing.

Interaction partners Electrostatics Gravostatics

equal positive signs e" == e repulsion | My =< My ; attraction

equal negative signs e~ == e repulsion | My =< My ; attraction

opposite signs e =« e attraction | My == My repulsion

opp. signs, compensated {ef+e} =0 {Mg+Mgy =0

pairwise compensation in | photon; charge pairs | electron; neutrinos

Figure 21: Comparison of interacting quanta of charge and mass. Gravostatics
means Newtonian gravity applied to mono-rotons and extended into basic space.
The gravitational interactions - attraction and repulsion - are opposite to the
electrostatic interactions. Only the green colored interaction types are observ-
able in space-time. Particles with internal compensation of electrostatic effects
appear uncharged, particles with internal compensation of gravitational effects
appear massless or nearly massless. Masses of antiparticles and mass differences
of lepton models become always positive in space-time, thus no anti-gravitation
can be observed.

The assumption of negative mass quanta in basic space does not lead to
anti-gravitational effects in space-time. Anti-particles have positive masses in
space-time. If the difference of roton masses in a lepton model turns out to
have a negative sign, so it will appear in space-time as a small positive mass,
see Fig.22.

The two rotons have a relative independence in different states of a biroton.
This can be seen in the existence of a nonlocal state of a biroton during transla-
tion, in the independent development of magnetic properties of a roton carrying
an em charge, and in other instances. Therefore it is a suggestive assumption,
that rotons may exist also completely isolated, as 'mono-rotons’. Single entities
of positive and negative mass live in its eigenstate at a subparticle-level, similar
to entities of positive and negative charge, which live at the particle-level. How-
ever, only a biroton consisting of two bound rotons can translate in space-time,
developing time and spatial coordinates. Thus single rotons are immobile and
1nmobservable in space-time by direct experiments. A possible means to detect
single mono-rotons indirectly could be by its gravitational interaction. Gravity
has to be considered as existing already at the subparticle level, whereas the
interaction types generated by electromagnetic or weak charges develop only at
the particle level.
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Biroton Erot Erot Eo
per roton | per biroton | in spacetime

roton 1 i +M/2 2
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roton 1 i +M/2 +Mc? /4 ~0 20
i Muon-
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anti-roton 1 M2 -Mc2/4 =i z0
Muon-
roton 2 2 +Mc? /4 antineutrino

anti-roton 1 -M/2 2

5 M/A | e /2 moc’
? Anti-muon
-roton 2 -Mc? /4

Figure 22: The biroton as combination of rotons and anti-rotons. The internal
combination of rotational energies of the rotons may result in positive, negative
or even nearly zero total energies of the biroton in basic space. The invariant
mass in space-time is always positive. Negative masses are restricted to circular
motion, linear translational motions require positive masses and energies.

8.2 The joint emergence of particles and space-time

A certain amount of matter and antimatter, consisting exclusively of single
mono-rotons, is considered as a logical starting point of the cosmological devel-
opment. The first emerging biroton could create an isolated, short-lived piece
of space-time, with a linear spatial distance . and a cycle time t. as extensions
in space-time, see eqns. (6) and (27). One could speak of the first 'quanta of
space-time’ with dimensions depending on the geometry of the first emerging
birotons.

A big number of emerging birotons, accompanied by emerging quanta of
space-time could appear and disappear like flashs of lightning. During a short
time interval, several isolated pieces of space-time could be grown together,
forming a bigger region of space-time, populated by several birotons travelling
through space. Such processes could occur many times simultaneously and
yield finally a general space-time in the universe. The original quanta of the
emerging space-time would loose importance and disappear, not identifiable in
the continuum of general space-time.

Presumably the result could be the same as that caused by a ’Big Bang’
and a subsequent phase of 'cosmic inflation’ according to the standard model
of cosmology. The joint emergence of a huge amount of birotons and quanta of
space-time would replace the singular 'Big Bang’ and the cosmic inflation. Such
a development could generate distributed observable matter in a wide space all
at once, avoiding the singularities and difficulties connected with the cosmologic
standard model.
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The joint emergence of particles and space-time does not exclude a further
expansion of the universe, but it didn’t start at a singular point.

The proposal outlined in this article has to be checked with respect to its
compatiblity with all observed data such as the cosmic background radiation.

8.3 Mono-rotons as candidates of dark matter and dark
energy

A second question is the possible current existence of isolated mono-rotons
within the general space-time and the possibilities for a proof of the existence of
such mono-rotons. The presumed properties of a mono-roton can be estimated
from the structure diagrams of lepton models. We remark, that the quantities
given in Fig. 23 do not represent particle properties observable in space-time.
The indicated tentative values could possibly be changed by a factor of 2, such
that r = 30 fm and |L| = 2k.This would give the spin of a graviton, however,
gravitons are assumed to be massless in space-time. So in addition one had to
assume that gravitons consist of mixed matter like neutrinos, and they should
be observable in space-time. In contrast, we emphasize the inobservability of
mono-rotons.

Quantity Symbol Value
rotating energy, +2Mqc? |Erot| = 13 MeV
minimum -2Mq ¢?
radius, maximum r=h/2Mqc r=15fm
angular momentum |L| =2Mqc*r L] =h

Figure 23: Hypothetical properties of mono-rotons, inobservable for direct ex-
periments in space-time.

If mono-rotons would exist in the current universe, we could expect gravi-
tational effects without observable masses as an origin. The existence of mono-
rotons possibly could explain, why particles realizing the effects of dark matter
and dark energy couldn’t be discovered yet. It has to be checked, whether
positive mono-rotons could represent dark matter, while negative mass quanta
represent dark energy. The existence of negative mono-rotons in the current
universe would not result in observable anti-gravitation. Isolated mono-rotons
are not able to translate in space-time, they are motionless, 'fixed’ to its po-
sition. Consequently, negative mono-rotons could not stick together, forming
heavy stellar antimatter objects. Nevertheless, they could contribute to the
expansion of the universe.

The theory of Newtonian gravity can be extended to an application for the
interaction of mono-rotons. We call this theory "gravostatics" in analogy to
electrostatics. The paralleles beween these theories are outlined in Fig. 24.The
existence of a mass quantum Mg, independent of the gravitational constant G,
allows to define a dimensionless coupling strength of gravity a in analogy to the
finestructure constant «, see the last lines in the table Fig. 24. The Planck mass
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could not be used for the definion of ag, because this would produce a circle
definition. The Planck mass itself is defined using the gravitational constant.

a ; ag constants

Electrostatics

Gravostatics

Charge equivalent

CGS-Gaussian

a = e*lhe

ag = GNMZQ/PIC

ei « i,/G_NMQ

Sl system a = ke * e2/he ag = Gy*Mplhc | e* & My ; ke < Gy
numeric values | a ~ 7.2976 x 1073 | ag = 2. 839 x 1074 O
reciprocals + % 137.035999 | L ~3.5218 x 10" O

Figure 24: Comparison of coupling strengths in electrostatics and gravostatics.
The mass quantum Mg allows the definition of a gravitational coupling strength
ag and provides a quantization of gravity, restricted to basic space. kc means
the Coulomb constant, Gy the Newtonian gravitational constant.

The relation of the dimensionless constants ag and o amounts to

aG

=2.839 % 107%3/(7.2976 + 1073) ~ 3.89 x 10~*! (81)

The rotating mass quantum Mg causes a quantization of gravity, restricted
to basic space. This restriction corresponds possibly to recent results of quantum
gravity. Quantum gravity (QG) goes in the direction of a non-spatiotemporal
theory [28][16], that means, QG assumes a level "below’ the observable properties
of space-time. “It turns out that space-time is absent at the most fundamental
level and emerges only in an appropriate limit” [18].

The mass quantum £Mg represents in basic space the counterpart of the
elementary charge +e, if one uses SI units. This is appropriate for practical
purposes. However, the mass quantum and the elementary charge cannot be
expressed in the same units, this prevents a comparison at a fundamental level.
Only within the Gaussian cgs system, + e and + eq = +v/Gy * Mg have the
same purely mechanical units:

1y/g * em3 x 571 = 1statCoulomb = 1Franklin

The electrostatic and the gravostatic charge can now be compared:

e = 4.803204673 x 107'9y/g x cm® % s~ ! (82)
ec = Mg\/Gn = 2.996165 x 107%0/g % cm3 * s (83)
2
Cn624x1072; G- %9 x389x 107 (84)
e e (0%

The quantization of gravity in basic space does not hold in space-time. The
self-energy of circulating charges contributes to the particle mass and undergoes
also gravitational interaction. However, self-energy is not quantized despite of
the quantization of charge. Therefore, gravity in general is not quantized in
space-time in a similar way as in basic space.
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Einsteinian gravity is beyond the scope of this article. Einstein’s theory
of gravity describes the interaction of macroscopic matter and space-time in
the universe, without reference to intrinsic particle properties and to the quan-
tization of charge and mass. The GRT requires the existence of matter and
space-time as a prerequisite. A discussion of its emergence from a deeper level
of reality doesn’t seem to be promising within GRT. On the other hand, the joint
emergence of particles and space time discussed in this paper cannot contribute
to the knowledge on the macroscopic interaction of massive cosmic objects and
the curved space-time, which are successfully described by Einstein’s equations.

9 Conclusions

The article describes two extensions of the usual theoretical framework of par-
ticle physics.

First, space-time is complemented by a multi-dimensional circular eigenspace,
fixed to the structure of a particle. The eigenspace of a particle resembles the
space spanned by the body-fixed coordinates of a spinning top or a satellite.
The entirety of all eigenspaces, called basic space, establishes a new level below
space-time.

Second, the fundamental particles, structureless in space-time, receive a com-
posite structure, spatially extended in basic space. The building stones of the
structure called 'rotons’ resemble spinning tops. Rotons consist of quanta of
mass and charge, circulating with the velocity of light in basic space. Two ro-
tons coupled in a biroton represent the minimum structure of a particle. The
existence of rotons establishes a new subparticle level of material structure be-
low the particle level.

Both extensions are in principle compatible with Quantum Mechanics (QM) and
Quantum Electro Dynamics (QED), however, with the exception of the mass
generation by the Higgs-mechanism.

A particle model acquires its mass from two sources: The rotational energy
of circulating mass quanta and the self-energy of circulating elementary charges.
Self-energy is defined as Coulomb-energy caused by the circular self-distance of
the charges. The self-distance, for instance the circumference of the circular
motion, is always non-zero and therefore infinties do not occur.

The introduction of negative mass quanta allows also the modelling of leptons
with zero or nearly zero mass.

Gyromagnetic properties can be calculated seperately for the two rotons of a
charged biroton, which helps to understand the anomalous magnetic moment of
particles.

A biroton shows various properties of a Dirac-particle, such as a 47 - cycle
and four states corresponding to the states of a bispinor. The circular velocities
+c and -c of the two rotons of a biroton equal the eigenvalues belonging to the
so called "Zitterbewegung" in the Dirac theory.

The translation of a particle model in space-time appears as an intermittent
process, consisting of single linear steps always performed with the velocity of
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light. A local mode and a nonlocal mode of translation appear, caused by
translational steps initiated by one of the rotons or by both in cooperation.
The probabilistic description of the intermittent translation leads to the laws of
the Special Relativity Theory (SRT).

The probability wave of the QM has possibly its origin in basic space. The
quantum-mechanical probability density in space-time can be interpreted as
an originally Gaussian (bell-shaped) envelope of a number of stochastic trans-
lational steps. The relativistic addition of velocities and the special Lorentz
transformation follow naturally from the probabilistic expressions, if one con-
siders two or more particle models in relative translation.

The cosmologic implications of the proposed subparticle level of matter and
space-time have been discussed using lepton models only, without the knowledge
on basic space - models of mesons, baryons, and photons, although such models
were developed already [13]. However, this restriction is acceptable for the given
purpose, because the structure of birotons is fundamental also to other particle
models and all models consist of rotons at the subparticle level.

The cosmologic standard model assumes a start of the cosmic development
from a singularity of infinite energy density with an explosive event called 'Big
Bang’ and a subsequent expansion of the universe during a fraction of a second,
faster than the velocity of light, called ’cosmic inflation’.

The model proposed in this article avoids the assumptions of a Big Bang and
of an inflation. The starting point of the development was probably an amount
of matter / antimatter without charge and other particle properties and without
an existence in space-time, completely located in basic space. Matter and energy
had the form of massive mono-rotons, that means single isolated circulating
subcomponents of particles. Each development of a particle by coupling of two
mono-rotons was connected with the generation of a quantum of space-time,
surrounding the particle. A big number of such processes at the same time
resulted in an amount of particulate matter, distributed in a region of space-
time. A joint emergence of particles and of space-time could be eqivalent to the
effect of the 'Big Bang’ and of cosmic inflation.

This picture of the cosmic evolution has to be checked by the community of
physicists and cosmologists. Such a check would require quite unusual assump-
tions: A new subparticle level of reality, and a circular extra space complement-
ing space-time, inaccessible to direct experiments.

10 Declarations

No funds, grants, or other support was received.
The author has no relevant financial or non-financial interests to disclose.

42



References

[1]

[12]

[13]

Abolins M.A., Barry J. Blumenfeld, E. Eichten, H. Kagan, Kenneth D.
Lane, 1982, "Testing the Compositeness of Quarks and Leptons," eConf
(8206282 (1982) 274-287

Adloff, C. et al., 2000, H1 Collaboration, Search for Compositeness, Lep-
toquarks and Large Extra Dimensions in Contact Interactions at HERA,
arXiv:hep-ex/0003002v2 17 Mar 2000

Beck J.L., 2023, Neo-classical Relativistic Mechanics Theory for Elec-
trons that Exhibits Spin, Zitterbewegung, Dipole Moments, Wave-
functions and Dirac’s Wave Equation. Found Phys 53, 57 (2023).
https://doi.org/10.1007/s10701-023-00696-9

Bohr N.,1913: On the Constitution of Atoms and Molecules, Part I. In:
Philosophical Magazine. Vol. 26, 1913, S. 1-25 (uni-tuebingen.de [PDF])

Carroll S.M., A. Singh, 2021, "Quantum mereology: Factorizing Hilbert
space into subsystems with quasiclassical dynamics." Phys. Rev. A 103,
022213

ChunJun C., Sean M. Carroll, Spyridon Michalakis, 2016, "Space from
Hilbert Space: Recovering Geometry from Bulk Entanglement" CALT
2016-15, arXiv:1606.08444v3 [hep-th] 15 Dec 2016

CODATA https://physics.nist.gov/cuu/Constants/index.html, retrieved
Feb. 2025

Consa, O., 2018, Helical Solenoid Model of the Electron, PROGRESS IN
PHYSICS, Issue 2 (April), Volume 14

Di Vecchia P.,1979, Ravndal F., Supersymmetric Dirac particles, Phys.
Lett. 73A, number 5, 6 p. 371 (1979)

Duff M.J., 2012, "Answering the Critics." Imperial/TP/2011/mjd/4;
arXiv:1112.0788v3 [physics.hist-ph] 22 Jun 2012

de Haro S., Dieks, D., 't Hooft, G., Verlinde, E., 2013, "Forty Years of
String Theory, Reflecting on the Foundations, Found Phys (2013) 43:1-7,
DOIT 10.1007/s10701-012-9691-3

Herrmann, H.-D., 2022, A circular ’basic space’ as complement
of space-time - an outcome of analogies between natural systems.
https://philarchive.org/rec/HERACQ

Herrmann, H.-D., 2024, The Twofold Existence of Particles and Nuclei. A
dual particle model realized in two spaces — space-time and a circular ‘basic
space’, Second edition, Books on Demand, ISBN 978-3-75832-920-3

43



Hestenes, D.,2020, Quantum Mechanics of the electron particle-clock,
arXiv: 1910. 10478 v2 [physics. gen-ph] 24 Jan 2020

Huang K., 1952, On the Zitterbewegung of the Dirac Electron, American
Journal of Physics 20, 479

Huggett N., Christian Wuethrich, 2021, Chapter 1: Introduction: The
emergence of spacetime, arXiv:2101.06955v1 [physics.hist-ph] 18 Jan 2021

Kaluza Th.,1921, Zum Unitéitsproblem der Physik. Sitzungsber. Preuss.
Akad. Wiss., Phys. Math. K1.:966 (1921).

Kiefer C.; Space, Time, Matter in Quantum Gravity, arXiv: 2004. 03174v1
[er-qc] 7 Apr 2020

Klein O.,1926, Quantentheorie und fiinfdimensionale Relativitdtstheorie. Z.
Phys., 37:895, (1926)

Lyons, L., 1982, Introduction to the possible substructure of quarks and
leptons. Available from NTIS, PC A05/MF A01, 100 p.

Particle Data Group https://pdglive.lbl.gov /Particle.action?node=S004&init=0;

retrieved Feb 2025

Poelz, G., 2016, An Electron Model with Synchrotron Radiation, arXiv:
1206. 0620v24 [physics. class-ph]

Ravndal, F., 1980, Supersymmetric Dirac particles in external fields. Phys.
Rev. D (3) 21 (1980), no. 10, 2823-2832

Schrodinger E, 1926, "Quantisierung als Eigenwertproblem 1", Annalen der
Physik 79, 361-376

Slater J.C., 1926, "Spinning Electrons and the Structure of Spectra." Na-
ture, 117:587, 1926

Sommerfeld A., 1916, Zur Quantentheorie der Spectrallinien (I +
I). In: Annalen der Physik. 51. Jahrgang, 1916, S. 1-94,
doi:10.1002/andp.19163561702.

Wang Wei-Ting, Yen-Jui Chang, Ching Ray Chang, 2024, "Quantum En-
tanglement in Dirac Dynamics via Continuous-Time Quantum Walks in a
Quantum Circuit Framework." arXiv:2411.04540 [quant-ph)]

Wiithrich C., The emergence of space and time, arXiv: 1804. 02184vl
[physics. hist-ph] 6 Apr 2018

44



